Многолучевая интерференция

При наложении двух когерентных световых пучков образуются интерференционные полосы, в которых распределение интенсивности описывается функцией I~cos2(/2) (Δ - разность хода пучков). Максимумы и минимумы интенсивности, т.е. светлые и темные полосы, в двух лучевой интерференционной картине имеют одинаковую ширину. При наложении большого числа пучков распределение интенсивности в интерференционной картине существенно иное. Изменение характера интерференционных полос при увеличении числа n пучков качественно можно предсказать на основе закона сохранения энергии. Амплитуда световых колебаний в максимумах интенсивности, где сложение колебаний происходит в одинаковой фазе, в n раз больше, а интенсивность в n2 раз больше, чем от одного пучка (при условии, что когерентные пучки имеют одинаковую или почти одинаковую интенсивность). Но полная энергия, приходящаяся на одну интерференционную полосу, лишь в n раз больше, чем в одном пучке. Увеличение интенсивности в максимумах в n2 раз возможно только в случае существенного перераспределения потока энергии в пространстве: при прежнем расстоянии между светлыми полосами их ширина должна быть примерно в n раз меньше этого расстояния. Благодаря образованию узких максимумов, т.е. резких светлых полос, разделенных широкими темными промежутками, многолучевая интерференция получила важное практическое применение. Большое число когерентных световых пучков может возникнуть в результате дифракция при прохождении плоской волны через экран с одинаковыми регулярно расположенными отверстиями (метод деления волнового фронта). Распределение интенсивности в такой многолучевой интерференционной картине будет рассмотрено на примере дифракционной решетки. Здесь мы изучим интерференцию при многократных отражениях света от двух параллельных поверхностей (метод деления амплитуды). На этом принципе действует интерферометр Фабри-Перо, широко используемый в спектроскопии высокого разрешения и в метрологии.

Оставить комментарий к «Многолучевая интерференция»